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İçerik 

• Bagging 

• Random Forests 

• Boosting 



Power of the crowds 

• Wisdom of the crowds 

 

 



Torbalama 

Verileri rastgele farklı şekillerde bölersek, karar ağaçları farklı 
sonuçlar, yüksek varyans verir. 

Torbalama: Önyükleme toplama, düşük varyansla sonuçlanan bir 
yöntemdir. 

Verilerin (veya birden çok örneğin) birden fazla gerçekleşmesine 
sahip olsaydık, tahminleri birden çok kez hesaplayabilir ve birden 
fazla zahmetli tahminin ortalamasını almanın daha az belirsiz 
sonuçlar ürettiği gerçeğinin ortalamasını alabilirdik. 



Bagging  
Say for each sample b, we calculate fb(x), then: 
 
 
How?  
 
Bootstrap  
Construct B (hundreds) of trees (no pruning)  
Learn a classifier for each bootstrap sample and average them 
Very effective 
 



Bagging for classification: Majority vote 

 
Test error 

NO OVERFITTING 



X1 

X2 



Bagging decision trees 

Hastie et al.,”The Elements of Statistical Learning: Data Mining, Inference, and Prediction”, Springer (2009) 



Out-of-Bag Error Estimation  
• No cross validation? 

• Remember, in bootstrapping we sample with replacement, and 
therefore not all observations are used for each bootstrap 
sample. On average 1/3 of them are not used!  

• We call them out-of-bag samples (OOB) 

•  We can predict the response for the i-th observation using each of 
the trees in which that observation was OOB and do this for n 
observations 

•  Calculate overall OOB MSE or classification error 



Bagging 

• Reduces overfitting (variance) 

• Normally uses one type of classifier 

• Decision trees are popular 

• Easy to parallelize 



Variable Importance Measures  

• Bagging results in improved accuracy over prediction using a single 
tree  

• Unfortunately, difficult to interpret the resulting model. Bagging 
improves prediction accuracy at the expense of interpretability.  

 

Calculate the total amount that the RSS or Gini index is decreased 
due to splits over a given predictor, averaged over all B trees.  

 



Using Gini index on heart data 



RF: Variable Importance Measures  

Record the prediction accuracy on the oob samples for each tree 

 

Randomly permute the data for column j in the oob samples the 
record the accuracy again.  

 

The decrease in accuracy as a result of this permuting is averaged 
over all trees, and is used as a measure of the importance of 
variable j in the random forest.  

 

 

 





Bagging - issues 

Each tree is identically distributed (i.d.) 

 the expectation of the average of B such trees is the same 
as the expectation of any one of them  

the bias of bagged trees is the same as that of the 
individual trees 

 

i.d. and not i.i.d 

 

 



Bagging - issues 
An average of B i.i.d. random variables, each with variance σ2, has variance: 
σ2/B 

If i.d. (identical but not independent) and pair correlation r  is present, then 
the variance is:  

 

 

As B increases the second term disappears but the first term remains  

 

Why does bagging generate correlated trees? 

 

 



Bagging - issues 

Suppose that there is one very strong predictor in the data set, 
along with a number of other moderately strong predictors.  

 

Then all bagged trees will select the strong predictor at the top of 
the tree and therefore all trees will look similar.  

 

How do we avoid this?  

 

 



Bagging - issues 
We can penalize the splitting (like in pruning) with a penalty term that depends on the number of times 
a predictor is selected at a given length  

  

We can restrict how many times a predictor can be used 

 

We only allow a certain number of predictors  

 

 



Bagging - issues 
Remember we want i.i.d such as the bias to be the same and variance to be less? 

Other ideas?  

 

What if we consider only a subset of the predictors at each split?  

 

We will still get correlated trees unless …. 

we randomly select the subset ! 



Random Forests  
 



Random Forests  

As in bagging, we build a number of decision trees on 
bootstrapped training samples each time a split in a tree is 
considered, a random sample of m predictors is chosen as split 
candidates from the full set of p predictors.  

 

Note that if m = p, then this is bagging.  



Random Forests Algorithm  
For b = 1 to B:  

(a) Draw a bootstrap sample Z∗ of size N from the training data.  

 (b) Grow a random-forest tree  to the bootstrapped data, by recursively 
repeating the following steps for each terminal node of the tree, until the minimum 
node size nmin is reached.  

  i. Select m variables at random from the p variables.  

  ii. Pick the best variable/split-point among the m. 

  iii. Split the node into two daughter nodes.  

Output the ensemble of trees.  

 

To make a prediction at a new point x we do: 

 For regression: average the results  

 For classification: majority vote  

 



Random Forests Tuning 
The inventors make the following recommendations:  

• For classification, the default value for m is  √p and the minimum node size is one.  

• For regression, the default value for m is p/3 and the minimum node size is five.  

 

In practice the best values for these parameters will depend on the problem, and they 
should be treated as tuning parameters.  

 

Like with Bagging, we can use OOB and therefore  RF can be fit in one sequence, with 
cross-validation being performed along the way. Once the OOB error stabilizes, the 
training can be terminated.  

 



Example 

• 4,718 genes measured on tissue samples from 349 patients. 

• Each gene has different expression  

• Each of the patient samples has a qualitative label with 15 different 
levels: either normal or 1 of 14 different types of cancer.  

 

Use random forests to predict cancer type based on the 500 genes that 
have the largest variance in the training set.  



Null choice (Normal)  



Random Forests Issues 
When the number of variables is large, but the fraction of relevant variables is small, 
random forests are likely to perform poorly when m is small  
 
Why?  
 
Because:  
At each split the chance can be small that the relevant variables will be selected  
 
For example, with 3 relevant and 100 not so relevant variables the probability of any 
of the relevant variables being selected at any split is ~0.25 
 



Probability of being selected 



Can RF overfit? 

Random forests “cannot overfit” the data wrt to number of 
trees. 

 

Why?  

 

The number of trees, B does not mean increase in the 
flexibility of the model  

 



 

I have seen discussion about gains in performance by 
controlling the depths of the individual trees grown in 
random forests. I usually use full-grown trees and 
seldom it costs much (in the classification error) and 
results in one less tuning parameter.  

 



Boosting 
 



Boosting 
Boosting is a general approach that can be applied to many 
statistical learning methods for regression or classification. 
 
Bagging: Generate multiple trees from bootstrapped data and 
average the trees.  
Recall bagging results in i.d. trees and not i.i.d.  
 
RF  produces i.i.d (or more independent) trees by randomly 
selecting a subset of predictors at each step 
 



Boosting 

Boosting works very differently.  

1. Boosting does not involve bootstrap sampling 

2. Trees are grown sequentially: each tree is grown 
using information from previously grown trees 

3. Like bagging, boosting involves combining a  large 
number of decision trees, f1, . . . , fB  

 



Sequential fitting 

Given the current model, 

• we fit a decision tree to the residuals from the model. 
Response variable now is the residuals and not Y 

• We then add this new decision tree into the fitted function in 
order to update the residuals 

• The learning rate has to be controlled  

 

 



Boosting for regression 

1. Set f(x)=0 and ri =yi for all i in the training set.  

2. For b=1,2,...,B, repeat:  

    a. Fit a tree with d splits(+1 terminal nodes) to the training data (X, r). 

    b. Update the tree by adding in a shrunken version of the new tree:  

   

    c. Update the residuals, 

 

3. Output the boosted model, 

 

  

 

 



Boosting tuning parameters  

• The number of trees B. RF and Bagging do not overfit as B 
increases. Boosting can overfit! Cross Validation 

• The shrinkage parameter λ, a small positive number. 
Typical values are 0.01 or 0.001 but it depends on the 
problem. λ only controls the learning rate 

• The number d of splits in each tree, which controls the 
complexity of the boosted ensemble. Stumpy trees, d = 1 
works well.  
 
 





Different flavors 

• C5.0, The most significant feature unique to C5.0 is a scheme for deriving rule 
sets. After a tree is grown, the splitting rules that define the terminal nodes can 
sometimes be simplified: that is, one or more condition can be dropped without 
changing the subset of observations that fall in the node.  

 

• CART or Classification And Regression Trees is often used as a generic acronym 
for the term Decision Tree, though it apparently has a more specific meaning. In 
sum, the CART implementation is very similar to C4.5. Used in sklearn  



Missing data 

• What if we miss predictor values? 

– Remove those examples => depletion of the training set 

– Impute the values either with mean, knn, from the marginal 
or joint distributions  

• Trees have a nicer way of doing this 

– Categorical  
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Where are we? 

• Algorithms 
– DTs 
– Perceptron + Winnow 
– Gradient Descent 
– SVM 

•   Theory 
– Mistake Bound 
– PAC Learning  

• We have a formal notion of “learnability” 
– We understand Generalization 

• How will your algorithm do on the next example? 

– How it depends on the hypothesis class (VC dim) 
• and other complexity parameters 

• Algorithmic Implications of the theory? 
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Boosting 

• Boosting is (today) a general learning paradigm for putting together a Strong 
Learner, given a collection (possibly infinite) of Weak Learners. 

• The original Boosting Algorithm was proposed as an answer to a theoretical 
question in PAC learning. [The Strength of Weak Learnability; Schapire, 89] 

• Consequently, Boosting has interesting theoretical implications, e.g., on the 
relations between PAC learnability and compression. 
– If a concept class is efficiently PAC learnable then it is efficiently PAC learnable by an 

algorithm whose required memory is bounded by a polynomial in 𝑛, 𝑠𝑖𝑧𝑒 𝑐 and log (
1

ε
). 

– There is no concept class for which efficient PAC learnability requires that the entire 
sample be contained in memory at one time – there is always another algorithm that 
“forgets” most of the sample.  
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Boosting Notes 
 

• However, the key contribution of Boosting has been practical, as 
a way to compose a good learner from many weak learners. 

• It is a member of a family of Ensemble Algorithms, but has 
stronger guarantees than others. 

• A Boosting demo is available at 
http://cseweb.ucsd.edu/~yfreund/adaboost/ 

• Example 

• Theory of Boosting 
– Simple & insightful   

 

http://cseweb.ucsd.edu/~yfreund/adaboost/
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Boosting Motivation 
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The Boosting Approach 
 – Algorithm 

• Select a small subset of examples 

• Derive a rough rule of thumb 

• Examine 2nd set of examples 

• Derive 2nd rule of thumb 

• Repeat T times 

• Combine the learned rules into a single hypothesis 

– Questions: 
• How to choose subsets of examples to examine on each round? 

• How to combine all the rules of thumb into single prediction rule? 

– Boosting  
• General method of converting rough rules of thumb into highly accurate prediction 

rule 
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Theoretical Motivation 
– “Strong” PAC algorithm: 

• for any distribution 

•  ∀𝛿, 𝜀 >  0 

• Given polynomially many random examples  

• Finds hypothesis with 𝑒𝑟𝑟𝑜𝑟 ≤ 𝜀 with 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ≥  (1 −  𝛿) 

– “Weak” PAC algorithm  
• Same, but only for some 𝜀 ≤  ½ −  ϒ 

– [Kearns & Valiant ’88]:  
• Does weak learnability imply strong learnability? 

• Anecdote: the importance of the distribution free assumption 
– It does not hold if PAC is restricted to only the uniform distribution, say 
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History 
• [Schapire ’89]: 

– First provable boosting algorithm 
– Call weak learner three times on three modified distributions  
– Get slight boost in accuracy  
– apply recursively 

• [Freund ’90]: 
– “Optimal” algorithm that “boosts by majority” 

• [Drucker, Schapire & Simard ’92]: 
– First experiments using boosting 
– Limited by practical drawbacks 

• [Freund & Schapire ’95]: 
– Introduced “AdaBoost” algorithm 
– Strong practical advantages over previous boosting algorithms 

• AdaBoost was followed by a huge number of papers and practical applications 

Some lessons for Ph.D. students 
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A Formal View of Boosting 

• Given training set (𝒙1, 𝑦1), … (𝒙𝑚, 𝑦𝑚) 

• 𝑦𝑖 ∈  {−1,+1} is the correct label of instance 𝒙𝑖 ∈  𝑿 

• For 𝑡 =  1, … , 𝑇 
– Construct a distribution 𝐷𝑡 on {1, …𝑚} 

– Find weak hypothesis (“rule of thumb”) 

                    ℎ𝑡 ∶  𝑿 →  {−1,+1} 

     with small error 𝜀𝑡 on Dt: 

     𝜀𝑡 = Pr
𝐷
[ℎ𝑡 𝒙𝑖 ≠ 𝑦𝑖]  

• Output: final hypothesis 𝐻𝑓𝑖𝑛𝑎𝑙 



𝑍𝑡 =  𝐷𝑡 𝑖 exp (−𝛼𝑡 𝑦𝑖ℎ𝑡 𝒙𝑖 )

𝑖
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Adaboost 

<  1; smaller weight 

>  1; larger weight 

Notes about αt:                
 Positive due to the weak learning assumption 
 Examples that we predicted correctly are 

demoted, others promoted 
 Sensible weighting scheme:   better hypothesis 

(smaller error)  larger weight 

Think about unwrapping it all 
the way to 1/𝑚 

𝑒+𝛼𝑡  =  𝑠𝑞𝑟𝑡
1 − 𝜀𝑡

𝜀𝑡
> 1

  
 

• Constructing 𝐷𝑡 on {1, …𝑚}: 
– 𝐷1(𝑖)  =  1/𝑚  
– Given 𝐷𝑡  and  ℎ𝑡 :  

• 𝐷𝑡+1  =   𝐷𝑡(𝑖)/𝑧𝑡  ×  𝑒−𝛼𝑡       if 𝑦𝑖  =  ℎ𝑡 𝒙𝑖  
      𝐷𝑡(𝑖)/𝑧𝑡 × 𝑒+𝛼𝑡       if 𝑦𝑖  ≠  ℎ𝑡 𝒙𝑖  

=
𝐷𝑡 𝑖

𝑧𝑡
× exp −𝛼𝑡 𝑦𝑖 ℎ𝑡 𝒙𝑖  

where 𝑧𝑡 = normalization constant 
and  𝛼𝑡  =  ½ ln { (1 − 𝜀𝑡)/𝜀𝑡 }  

 
 

• Final hypothesis: 𝐻𝑓𝑖𝑛𝑎𝑙  (𝒙)  =  𝑠𝑖𝑔𝑛 (𝑡  𝛼𝑡 ℎ𝑡(𝒙) ) 
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Administration (11/11/20) 
 
• Remember that all the lectures are available on the website before the class 

– Go over it and be prepared 
– A new set of written notes will accompany most lectures, with some more details, 

examples and, (when relevant) some code.  

 
• HW 3: Due on 11/16/20  

– You cannot solve all the problems yet. 
– Less time consuming; no programming 

 
• Cheating 

– Several problems in HW1 and HW2 
 

 
 

Are we recording? YES! 

Available on the web site 
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Projects 
• CIS 519 students need to do a team project: Read the project descriptions 

– Teams will be of size 2-4 
– We will help grouping if needed 

 
• There will be 3 projects.  

– Natural Language Processing (Text) 
– Computer Vision (Images) 
– Speech (Audio) 

 

• In all cases, we will give you datasets and initial ideas 
– The problem will be multiclass classification problems 
– You will get annotated data only for some of the labels, but will also have to predict other labels 
– 0-zero shot learning; few-shot learning; transfer learning 

 

• A detailed note will come out today.  
 

• Timeline: 
– 11/11  Choose a project and team up 
– 11/23  Initial proposal describing what your team plans to do  
– 12/2  Progress report 

– 12/15-20  (TBD) Final paper + short video 
•  Try to make it interesting!  

https://www.seas.upenn.edu/~cis519/fall2020/cis519-fall20-projects.pdf
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A Toy Example 

 

D1 
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A Toy Example 

𝜀1 =  0.3  
𝛼1 =  0.42 

D2 

h1 
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A Toy Example 

𝜀2 =  0.21 
𝛼2 =  0.65 

D3 

h2 
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A Toy Example 

𝜀3 =  0.14 
𝛼3 =  0.92 

h3 
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A Toy Example 

A cool and important note 
about the final hypothesis: 
it is possible that the 
combined hypothesis makes 
no mistakes on the training 
data, but boosting can still 
learn, by adding more weak 
hypotheses. 

Hfinal 

0.42 +0.65 +0.92 =sign 
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Analyzing Adaboost 

 
1. Why is the theorem stated in terms of 
minimizing training error? Is that what we 
want? 
2. What does the bound mean? 
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Analyzing Adaboost 

 
1. Why is the theorem stated in terms of 
minimizing training error? Is that what we 
want? 
2. What does the bound mean? 

𝜖𝑡(1 − 𝜖𝑡)  =  (1/2 − ϒ𝑡)(1/2 +  ϒ𝑡))  
=  1/4 −  ϒ𝑡

2 

 
1 − (2ϒ𝑡)

2   ≤  exp (−(2ϒ𝑡)
2) 

Need to prove only 
the first inequality, 
the rest is algebra. 
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AdaBoost Proof (1) 

• Let 𝑓 𝒙 =  𝛼𝑡ℎ𝑡 𝒙 → 𝐻𝑓𝑖𝑛𝑎𝑙  𝒙 = 𝑠𝑖𝑔𝑛(𝑓 𝒙 )𝑡  

• Step 1: the final weight of an example (via unwrapping recursion) 

𝐷𝑓𝑖𝑛𝑎𝑙 𝑖 =
exp −𝑦𝑖  𝛼𝑡ℎ𝑡 𝒙𝑖𝑡

 𝑍𝑡𝑡

⋅
1

𝑚
 

=
𝑒−𝑦𝑖𝑓 𝒙𝑖

 𝑍𝑡𝑡   
⋅
1

𝑚
 

The final “weight” of 
the i-th example 
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AdaBoost Proof (2) 
• Step 2: 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑒𝑟𝑟𝑜𝑟 𝐻𝑓𝑖𝑛𝑎𝑙 ≤  𝑍𝑡𝑡  
• Proof: 

– 𝐻𝑓𝑖𝑛𝑎𝑙 𝒙 ≠ 𝑦 → 𝑦𝑓 𝒙 ≤ 0 → 𝑒−𝑦𝑓 𝒙 ≥ 1 

So:  

– 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑒𝑟𝑟𝑜𝑟 𝐻𝑓𝑖𝑛𝑎𝑙  

=
1

𝑚
  1    𝑖𝑓 𝑦𝑖 ≠ 𝐻𝑓𝑖𝑛𝑎𝑙(𝒙𝑖)

𝑖

 

=
1

𝑚
  0     𝑒𝑙𝑠𝑒

𝑖

 

≤
1

𝑚
 𝑒−𝑦𝑖𝑓 𝒙𝑖

𝑖

 

=  𝐷𝑓𝑖𝑛𝑎𝑙 𝑖  𝑍𝑡

𝑡𝑖

 

=  𝑍𝑡

𝑡

 

 

The definition 
of training error 

Always holds for 
mistakes (see above) 

Using Step 1 

D is a distribution 
over the m examples 
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AdaBoost Proof(3) 

• Step 3: 𝑍𝑡 = 2 (𝜖𝑡 1 − 𝜖𝑡)
1

2 

• Proof: 

𝑍𝑡 =  𝐷𝑡 𝑖 exp (−𝛼𝑡𝑦𝑖ℎ𝑡 𝒙𝑖 )

𝑖

=  𝐷𝑡 𝑖 𝑒𝛼𝑡 +  𝐷𝑡 𝑖 𝑒−𝛼𝑡

𝑖:𝑦𝑖=ℎ𝑡(𝒙𝑖)𝑖:𝑦𝑖≠ℎ𝑡(𝒙𝑖)

 

= 𝜖𝑡𝑒
𝛼𝑡 + 1 − 𝜖𝑡 𝑒−𝛼𝑡  

= 2 (𝜖𝑡 1 − 𝜖𝑡)
1
2 

Splitting the sum to 
“mistakes” and no-
mistakes” 

The definition of 𝜖𝑡  

The definition of αt 

By definition of Zt; it’s a 
normalization term 

Step 2 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑒𝑟𝑟𝑜𝑟 𝐻𝑓𝑖𝑛𝑎𝑙 ≤  𝑍𝑡𝑡   
and step 3 together prove the Theorem. 
 The error of the final hypothesis can be as low as you 
want. 

𝑒+𝛼𝑡 = 𝑠𝑞𝑟𝑡
1 − 𝜖𝑡

𝜖𝑡
> 1 

A strong assumption due to 
the “for all distributions”. 
But – works  well in practice 

Why does it work?  
The Weak Learning 
Hypothesis 
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Summary of Ensemble Methods  

• Boosting 

• Bagging 

• Random Forests 
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Boosting 

• Initialization: 
– Weigh all training samples equally 

• Iteration Step: 
– Train model on (weighted) train set 

• Choose your favorite hypothesis space & learning algorithm 

– Compute error of model on train set 
– Update the distribution:  

• Increase/decrease weights on training cases model gets wrong/correct. 

• Typically requires 100’𝑠 to 1000’𝑠 of iterations 
• Return final model:  

– Carefully weighted prediction of each model 
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Boosting: Different Perspectives 

• Boosting is a maximum-margin method  (Schapire et al. 1998, Rosset et al. 
2004) 
– Trades lower margin on easy cases for higher margin on harder cases 

 
• Boosting is an additive logistic regression model  (Friedman, Hastie and 

Tibshirani 2000) 
– Tries to fit the logit of the true conditional probabilities 

• Boosting is an equalizer  (Breiman 1998) (Friedman, Hastie, Tibshirani 2000) 
– Weighted proportion of times example is misclassified by base learners tends to be the 

same for all training cases 
 

• Boosting is a linear classifier, over an incrementally acquired “feature space”. 
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Bagging 
• Bagging predictors is a method for generating multiple versions of a predictor and using 

these to get an aggregated predictor. 
– The aggregation averages over the versions when predicting a numerical outcome and does a plurality 

vote when predicting a class. 

• The multiple versions are formed by making bootstrap replicates of the learning set and 
using these as new learning sets. 
– That is, use samples of the data, with repetition 

 
• Tests on real and simulated data sets using classification and regression trees and subset 

selection in linear regression show that bagging can give substantial gains in accuracy. 
• The vital element is the instability of the prediction method. If perturbing the learning set 

can cause significant changes in the predictor constructed, then bagging can improve 
accuracy. 
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Example: Bagged Decision Trees 

• Draw 100 bootstrap samples of data 

• Train trees on each sample  100 trees 

• Average prediction of trees on out-of-bag samples 

… 

Average prediction 

(0.23 + 0.19 + 0.34 + 0.22 + 0.26 + … + 0.31) / # Trees = 0.24 
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Random Forests (Bagged Trees++) 

• Draw 1000 + bootstrap samples of data 

• Draw sample of available attributes at each split 

• Train trees on each sample/attribute set  1000 + trees 

• Average prediction of trees on out-of-bag samples 
… 

Average prediction 

(0.23 + 0.19 + 0.34 + 0.22 + 0.26 + … + 0.31) / # Trees = 0.24 
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So Far: Classification 

• So far, we focused on Binary Classification  

• For linear models:  
– Perceptron, Winnow, SVM, GD, SGD  

• The prediction is simple:  

– Given an example 𝒙,  

– Prediction =  sgn (𝒘𝑇𝒙) 

– Where 𝒘 is the learned model  

• The output is a single bit  
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Multi-Categorical Output Tasks 
– Multi-class Classification (𝑦 ∈  {1, … , 𝐾}) 

• character recognition (‘6’) 

• document classification (‘homepage’) 

– Multi-label Classification (𝑦 ⊆  {1,… , 𝐾}) 
• document classification (‘(homepage,facultypage)’) 

– Category Ranking (𝑦 ∈ 𝜋(𝐾)) 
• user preference (‘(love > like > hate)’) 

• document classification (‘hompage > facultypage > sports’) 

– Hierarchical Classification (𝑦 ⊆  {1,… , 𝐾}) 
• cohere with class hierarchy 

• place document into index where ‘soccer’ is-a ‘sport’ 
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Setting 

– Learning: 

• Given a data set 𝐷 =  {(𝒙𝑖  , 𝑦𝑖)}1
𝑚 

• Where 𝒙𝑖 ∈  𝑹𝑛, 𝑦𝑖 ∈  {1,2, … , 𝑘}. 

– Prediction (inference): 

• Given an example 𝒙, and a learned function (model), 

• Output a single class labels 𝑦. 
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Binary to Multiclass 

• Most schemes for multiclass classification work by reducing the 
problem to that of binary classification. 

• There are multiple ways to decompose the multiclass prediction into 
multiple binary decisions  
– One-vs-all  
– All-vs-all  
– Error correcting codes 

• We will then talk about a more general scheme: 
– Constraint Classification 

• It can be used to model other non-binary classification schemes and 
leads to Structured Prediction.  
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One-Vs-All 

• Assumption: Each class can be separated from all the rest using a binary classifier in 
the hypothesis space. 

• Learning: Decomposed to learning 𝑘 independent binary classifiers, one for each 
class label. 

• Learning:  
– Let 𝐷 be the set of training examples.  
–  ∀ label 𝑙, construct a binary classification problem as follows: 

• Positive examples: Elements of 𝐷 with label 𝑙 
• Negative examples: All other elements of 𝐷 

– This is a binary learning problem that we can solve, producing 𝑘 binary classifiers 𝒗1, 𝒗2, … 𝒗𝑘  

• Decision: Winner Takes All (WTA):  
–                          𝑓(𝑥)  =  𝑎𝑟𝑔𝑚𝑎𝑥𝑖 𝒗𝑖

𝑇𝒙  
 



Solving MultiClass with 1 vs All learning 

• MultiClass classifier 
– Function    𝑓 ∶  𝑹𝑛  {1,2,3, … , 𝑘} 

 
• Decompose into binary problems 

 
 
 

• Not always possible to learn  
• No theoretical justification  

– Also: need to make sure the range of all classifiers is the same (for the argmax) 

• Note: in high dimensional spaces, it’s likely that things are separable 



Learning via One-Versus-All (OvA) Assumption 
• Find 𝒗𝒓, 𝒗𝒃, 𝒗𝒈, 𝒗𝒚 𝑹𝑛  such that  

𝒗𝒓. 𝒙 > 0   𝑖𝑓𝑓 𝑦 =  𝑟𝑒𝑑        
𝒗𝒃. 𝒙 >  0  𝑖𝑓𝑓 𝑦 =  𝑏𝑙𝑢𝑒      
𝒗𝒈. 𝒙 >  0  𝑖𝑓𝑓 𝑦 =  𝑔𝑟𝑒𝑒𝑛    
𝒗𝒚. 𝒙 >  0  𝑖𝑓𝑓 𝑦 =  𝑦𝑒𝑙𝑙𝑜𝑤   

• Classification: 𝑓 𝒙 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖𝒗𝒊 𝒙    

  

𝑯 =  𝑹𝑛𝑘 

Real 
Problem 
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All-Vs-All 

• Assumption: There is a separation between every pair of classes using a binary 
classifier in the hypothesis space. 

• Learning: Decomposed to learning [𝑘 𝑐ℎ𝑜𝑜𝑠𝑒 2] ~ 𝑘2 independent binary 
classifiers, one corresponding to each pair of class labels. For the pair (𝑖, 𝑗): 
– Positive example: all examples with label 𝑖 
– Negative examples: all examples with label 𝑗   

• Decision: More involved, since output of binary classifier may not cohere. Each 
label gets 𝑘 − 1 votes. 

• Decision Options:  
– Majority: classify example 𝐱 to take label 𝑖 if 𝑖 wins on 𝐱 more often than 𝑗 (𝑗 = 1,…𝑘)  

– A tournament: start with  
𝑛

2
  pairs; continue with winners . 

 



Learning via All-Verses-All (AvA) Assumption 

• Find 𝒗𝒓𝒃, 𝒗𝒓𝒈, 𝒗𝒓𝒚, 𝒗𝒃𝒈, 𝒗𝒃𝒚, 𝒗𝒈𝒚  𝑹𝑑 such that  

 

– 𝒗𝒓𝒃. 𝒙 >  0  𝑖𝑓 𝑦 =  𝑟𝑒𝑑 
           <  0  𝑖𝑓 𝑦 =  𝑏𝑙𝑢𝑒 
– 𝒗𝒓𝒈. 𝒙 >  0  𝑖𝑓 𝑦 =  𝑟𝑒𝑑 
                 <  0  𝑖𝑓 𝑦 =  𝑔𝑟𝑒𝑒𝑛 
– ... (for all pairs) 

 

Individual  

Classifiers 

Decision  

Regions 

𝑯 =  𝑹𝑘𝑘𝑛 

How to 
classify? 

It is possible to 
separate all 𝑘 classes 
with the 
𝑂(𝑘2) classifiers 



Classifying with AvA 

 
Tournament 

1 red, 2 blue, 2 green 
  ? 

Majority Vote 

All are post-learning and might cause weird stuff 
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One-vs-All vs. All vs. All 
• Assume m examples, 𝑘 class labels.  

– For simplicity, say, 
𝑚

𝑘
 in each. 

• One vs. All: 

– Classifier 𝑓𝑖: 
𝑚

𝑘
 (+) and 

𝑘−1 𝑚

𝑘
 (-) 

– Decision:  
– Evaluate 𝑘 linear classifiers and do Winner Takes All (WTA):  

–                          𝑓(𝒙)  =  𝑎𝑟𝑔𝑚𝑎𝑥𝑖𝑓𝑖(𝒙)   =   𝑎𝑟𝑔𝑚𝑎𝑥𝑖  𝒗𝑖
𝑇𝒙 

• All vs. All: 
– Classifier 𝑓𝑖𝑗: 

𝑚

𝑘
 (+) and 

𝑚

𝑘
 (-) 

– More expressivity, but less examples to learn from. 
– Decision:  
– Evaluate 𝑘2 linear classifiers; decision sometimes unstable.   

• What type of learning methods would prefer All vs. All (efficiency-wise)?   
 
 

(Think about Dual/Primal) 
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Error Correcting Codes Decomposition 

Label P

1 

P

2 

P3 P4 

1 - + - + 
2 - + + - 
3 + - - + 
4 + - + + 
k - + - - 

• 1-vs-all uses k classifiers for k labels; can you use only log2 k? 
• Reduce the multi-class classification to random binary problems. 

– Choose a “code word” for each label.   
– K=8:  all we need is 3 bits, three classifiers  

• Rows: An encoding of each class (k rows) 
• Columns: L dichotomies of the data, each corresponds to a new 

classification problem 
• Extreme cases:   

– 1-vs-all: k rows, k columns  
– k rows log2 k columns 

• Each training example is mapped to one example per column 
– (x,3)  {(x,P1), +; (x,P2), -; (x,P3), -; (x,P4), +}  

 
• To classify a new example x: 

– Evaluate hypothesis on the 4 binary problems  
   {(x,P1) , (x,P2), (x,P3), (x,P4),}  
– Choose label that is most consistent with the results. 

• Use Hamming distance (bit-wise distance) 

• Nice theoretical results as a function of the performance of the Pi s (depending on 
code &  size) 

• Potential Problems?  

Can you separate any dichotomy?  



83 

Problems with Decompositions 

• Learning optimizes over local metrics 
– Does not guarantee good global performance 
– We don’t care about the performance of the local classifiers 

 
• Poor decomposition  poor performance 

– Difficult local problems 
– Irrelevant local problems 

 

• Especially true for Error Correcting Output Codes 
– Another (class of) decomposition 
– Difficulty: how to make sure that the resulting problems are separable. 

 
• Efficiency: e.g., All vs. All vs. One vs. All 
• Former has advantage when working with the dual space. 

 
• Nevertheless, the most dominant approach in applications is One Vs. All. 
• Not clear how to generalize it well to problems with a very large # of labels. 
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1 Vs All:  Learning Architecture 
• 𝑘 label nodes; 𝑛 input features, 𝑛𝑘 weights. 

• Evaluation: Winner Take All 

• Training: Each set of  𝑛 weights, corresponding to the 𝑖-th label, is trained  
– Independently, given its performance on example 𝑥, and  

– Independently of the performance of label 𝑗 on 𝑥.  

• Hence: Local learning; only the final decision is global, (Winner Takes All (WTA)). 

• However, this architecture allows multiple learning algorithms, including those the are “global” 
– e.g., see the implementation in the SNoW/LbJava Multi-class Classifier  

Targets (each an LTU) 

Features 

Weighted edges (weight 
vectors) 
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Another View on Binary Classification 

• Rather than a single binary variable at the output 

 

• Represent 2 weights per feature;  

– Decision: using the “effective weight”,  

      the difference between 𝒘
+
 and 𝒘

− 

– This is equivalent to the Winner take all decision  

– Learning: In principle, it is possible to use the 1-vs-all rule and update each set of 𝑛 weights separately, but we 
suggest a “balanced” Update rule that takes into account how both sets of 𝑛 weights predict on example 𝑥 

If (𝒘+ − 𝒘− ⋅ 𝒙 ≥ 𝜃] ≠ 𝑦,     𝒘𝑖
+ ← 𝒘𝑖

+𝑟𝑦𝑥𝑖 ,     𝒘𝑖
−← 𝒘𝑖

−𝑟−𝑦𝑥𝑖  
 

Positive 
𝑤

+ 

Negative 
𝑤

−
  

Can this be generalized to the 
case of 𝑘 labels, 𝑘 > 2?  

We need a “global” 
learning approach 
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Recall: Winnow’s Extensions 
• Winnow learns monotone Boolean functions 

• We extended to general Boolean functions via 

• “Balanced Winnow” 

– 2 weights per variable;  

– Decision: using the “effective weight”,  

      the difference between 𝒘
+
 and 𝒘

− 

– This is equivalent to the Winner take all decision  

– Learning: In principle, it is possible to use the 1-vs-all rule and update each set of n weights separately, but we 
suggested the “balanced” Update rule that takes into account how both sets of 𝑛 weights predict on example 
𝑥 

If (𝒘+ −𝒘− ⋅ 𝒙 ≥ 𝜃] ≠ 𝑦,     𝒘𝑖
+ ← 𝒘𝑖

+𝑟𝑦𝑥𝑖 ,     𝒘𝑖
−← 𝒘𝑖

−𝑟−𝑦𝑥𝑖  

Positive 
𝒘

+ 

Negative 
𝒘

−
  

Can this be generalized to the 
case of 𝑘 labels, 𝑘 > 2?  

We need a “global” 
learning approach 
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Extending Balanced 
• In a 1-vs-all training you have a target node that represents positive examples and target node that 

represents negative examples.  

• Typically, we train each node separately (mine/not-mine example). 

• Rather, given an example we could say: this is more a + example than a – example.  

• We compared the activation of the different target nodes (classifiers) on a given example.  (This example 
is more class + than class -) 

If (𝒘+ −𝒘− ⋅ 𝒙 ≥ 𝜃] ≠ 𝑦,     𝒘𝑖
+ ← 𝒘𝑖

+𝑟𝑦𝑥𝑖 ,     𝒘𝑖
−← 𝒘𝑖

−𝑟−𝑦𝑥𝑖   

 

• Can this be generalized to the case of 𝑘 labels, 𝑘 > 2?  
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Where are we? 

• Introduction 

• Combining binary classifiers 

– One-vs-all 

– All-vs-all 

– Error correcting codes 

• Training a single (global) classifier 

– Multiclass SVM 

– Constraint classification 
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Recall: Margin for binary classifiers 

• The margin of a hyperplane for a dataset is the distance between 
the hyperplane and the data point nearest to it. 

 

 
 

 

 

 

+ 
+ 

+ 
+ 

+ + + 
+ 

- 

- - 

- 

- 

- - 
- - 

- 

- 

- 
- 

- - 

- 

- 

- 
Margin with respect to this hyperplane 
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Multiclass Margin 
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Multiclass SVM (Intuition) 

• Recall: Binary SVM 
– Maximize margin 
– Equivalently,  

Minimize norm of weight vector, while keeping the closest points to the hyperplane with a score 
± 1 

 
• Multiclass SVM 

– Each label has a different weight vector (like one-vs-all) 
• But, weight vectors are not learned independently  

– Maximize multiclass margin 
– Equivalently, 

Minimize total norm of the weight vectors while making sure  that the true label scores at least 
1 more than the second best one. 
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Multiclass SVM in the separable case 

 Recall hard binary SVM 

The score for the true label is higher than 
the score for any other label by 1 

Size of the weights. 
Effectively, regularizer 
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Multiclass SVM: General case 

 Size of the weights. 
Effectively, regularizer 

The score for the true label is higher than 
the score for any other label by 1 

Slack variables. Not all 
examples need to 
satisfy  the margin 

constraint.  

Total slack. Effectively, 
don’t allow too many 

examples to violate the 
margin constraint 

Slack variables can 
only be positive 
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Multiclass SVM: General case 

The score for the true label is higher than 
the score for any other label by 1 - ξi 

Size of the weights. 
Effectively, regularizer 

Slack variables. Not all 
examples need to 
satisfy  the margin 

constraint.  

Total slack. Effectively, 
don’t allow too many 

examples to violate the 
margin constraint 

Slack variables can 
only be positive 
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Multiclass SVM 

• Generalizes binary SVM algorithm 

– If we have only two classes, this reduces to the binary (up to scale) 

• Comes with similar generalization guarantees as the binary SVM 

• Can be trained using different optimization methods 
– Stochastic sub-gradient descent can be generalized  

– Try as exercise 



96 

Multiclass SVM: Summary 
• Training: 

– Optimize the “global” SVM objective 

• Prediction: 
– Winner takes all 

• 𝑎𝑟𝑔𝑚𝑎𝑥𝑖  𝒘𝑖
𝑇𝒙 

• With 𝐾 labels and inputs in 𝐑𝑛, we have 𝑛𝐾 weights in all 
– Same as one-vs-all 

• Why does it work? 
– Why is this the “right” definition of multiclass margin? 

• A theoretical justification, along with extensions to other algorithms beyond SVM is 
given by “Constraint Classification” 
– Applies also to multi-label problems, ranking problems, etc.  
– [Zimak et al. NeurIPS 2003] 

 
 

Skip the rest of the notes 
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Constraint Classification 
• The examples we give the learner are pairs 𝒙, 𝑦 , 𝑦 ∈  {1, … 𝑘} 

• The “black box learner” (1 vs. all) we described might be thought of as a  function of 𝒙 only but, actually, we 
made use of the labels 𝑦 

• How is 𝑦 being used? 

– 𝑦 decides what to do with the example 𝒙; that is, which of the 𝑘 classifiers should take the example as a 
positive example (making it a negative to all the others). 

• How do we predict? 

– Let: 𝑓𝑦(𝒙)  =  𝒘𝑦
𝑇 𝒙 

– Then, we predict using:     𝑦
∗
 =  𝑎𝑟𝑔𝑚𝑎𝑥𝑦=1,…,𝑘 𝑓𝑦(𝒙) 

• Equivalently, we can say that we predict as follows: 

– Predict 𝑦 iff      ∀𝑦’ ∈  {1, … , 𝑘}, 𝑦’ ≠ 𝑦     (𝒘𝑦
𝑇 
–  𝒘𝑦’

𝑇 
) 𝒙 ≥  0    (∗∗) 

• So far, we did not say how we learn the 𝑘 weight vectors 𝒘𝑦 (𝑦 =  1, … 𝑘) 

– Can we train in a way that better fits the way we predict?  

– What does it mean?  

Is it better in any well defined way? 



• We are learning 𝑘 𝑛-dimensional weight vectors, so we can concatenate the 𝑘 weight vectors into  
–                                         𝒘 = 𝒘1, 𝒘2, … ,𝒘𝑘 ∈  𝑹𝑛𝑘 

 

• Key Construction: (Kesler Construction; Zimak’s Constraint Classification) 
– We will represent each example (𝒙, 𝑦), as an 𝑛𝑘-dimensional vector, 𝒙𝑦, with 𝒙 embedded in the 𝑦-th part of it  
        (𝑦 = 1,2, … 𝑘) and the other coordinates are 0. 

•                   E.g.,     𝒙𝑦  =  (𝟎, 𝒙, 𝟎, 𝟎)  𝑹𝑘𝑛           (ℎ𝑒𝑟𝑒 𝑘 = 4, 𝑦 = 2) 
• Now we can understand the 𝑛-dimensional decision rule:  
• Predict 𝑦 iff                              ∀ 𝑦’ ∈  1, … 𝑘 , 𝑦’ ≠ 𝑦         

          𝒘𝑦
𝑇  – 𝒘𝑦′

𝑇  ⋅  𝒙 ≥  0    (**) 

• Equivalently, in the 𝑛𝑘-dimensional space 
• Predict 𝑦 iff                             ∀ 𝑦’ ∈  {1, … 𝑘}, 𝑦’ ≠ 𝑦     

         𝒘𝑇  𝒙𝑦 – 𝒙𝑦′   𝒘𝑇 𝒙𝑦𝑦′  ≥  0   

 

• Conclusion: The set (𝒙𝑦𝑦′  , + )  (𝒙𝑦 – 𝒙𝑦′  ,  +) is linearly separable from the  set (−𝒙𝑦𝑦′   , − ) using the linear 
separator 𝒘 ∈  𝑹𝑘𝑛 ,  
– We solved the voroni diagram challenge.  
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Linear Separability for Multiclass 

Notice: This is just a representational trick. 
We did not say how to learn the weight 
vectors.  

We showed: if pairs of labels 
are separable (a reasonable 
assumption) than in some 

higher dimensional space, the 
problem is linearly separable.  
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Constraint Classification 
– Training:  

• We first explain via Kesler’s construction; then show we don’t need it 

• Given a data set {(𝐱, 𝑦)}, (𝑚 examples) with 𝐱 ∈  𝐑𝑛, 𝑦 ∈  {1,2, … 𝑘} 

   create a binary classification task (in 𝐑𝑘𝑛): 

           (𝐱𝑦  −   𝐱𝑦′ , +), (𝐱𝑦’ – 𝐱𝑦 , −),  for all 𝑦’ ≠  𝑦  [2𝑚(𝑘 − 1) examples] 

    Here 𝒙𝑦 ∈  𝑹𝑘𝑛 

• Use your favorite linear learning algorithm to train a binary classifier.  

– Prediction:  

• Given an 𝑛𝑘 dimensional weight vector 𝒘 and a new example 𝒙, predict:                      
𝑎𝑟𝑔𝑚𝑎𝑥𝑦 𝒘

𝑇 𝒙𝑦 
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Details: Kesler Construction & Multi-Class Separability 

• Transform Examples 

2 > 1 

2 > 3 

2 > 4 

2 > 1 

2 > 3 

𝑖 > 𝑗      𝑓𝑖(𝒙)  −  𝑓𝑗(𝒙)     >  0 

               𝒘𝑖  𝒙 −  𝒘𝑗  𝒙  >  0 

               𝑾  𝑿𝑖 − 𝑾 𝑿𝑗  >  0 

               𝑾  (𝑿𝑖 − 𝑿𝑗)     >  0 

               𝑾  𝑿𝑖𝑗                  >  0 

𝑿𝑖 =  𝟎, 𝒙, 𝟎, 𝟎 ∈  𝑹𝑘𝑑 

𝑿𝑗 =  𝟎, 𝟎, 𝟎, 𝒙 ∈  𝑹𝑘𝑑 

𝑿𝑖𝑗 =  𝑿𝑖  −   
𝑿𝑗 =  (𝟎, 𝒙, 𝟎, −𝒙) 

𝑾 =  𝒘1, 𝒘2, 𝒘3, 𝒘4 ∈  𝑹𝑘𝑑 

2 > 4 

If (𝒙, 𝑖) was a given n-dimensional example 
(that is, 𝒙 has is labeled 𝑖, then  

𝒙𝑖𝑗, ∀ 𝑗 = 1,…𝑘, 𝑗 ≠  𝑖, are positive 
examples in the 𝑛𝑘-dimensional space.  

– 𝒙𝑖𝑗 are negative examples.  
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Kesler’s Construction (1) 

• 𝑦 =  𝑎𝑟𝑔𝑚𝑎𝑥𝑖=(𝑟,𝑏,𝑔,𝑦)  𝒘𝑖. 𝒙 

– 𝒘𝑖 
, 𝒙 ∈ 𝑹𝑛

 
 

• Find 𝒘𝒓, 𝒘𝒃, 𝒘𝒈, 𝒘𝒚 ∈ 𝑹𝑛
  
  such that 

– 𝒘𝒓. 𝒙 >  𝒘𝒃. 𝒙 

– 𝒘𝒓. 𝒙 >  𝒘𝒈. 𝒙 

– 𝒘𝒓. 𝒙 >  𝒘𝒚. 𝒙 

𝑯 =  𝑹𝑘𝑛 
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Kesler’s Construction (2) 

• Let 𝒘 =  𝒘𝒓, 𝒘𝒃, 𝒘𝒈, 𝒘𝒚 ∈ 𝑹𝑘𝑛  

• Let 𝟎𝑛, be the n-dim zero vector 

 
 

• 𝒘𝒓. 𝒙 >  𝒘𝒃. 𝒙  𝒘. (𝑥, −𝑥, 𝟎𝑛, 𝟎𝑛)  >  0  𝒘. (−𝑥, 𝑥, 𝟎𝑛, 𝟎𝑛)  <  0 

• 𝒘𝒓. 𝒙 >  𝒘𝒈. 𝒙  𝒘. (𝑥, 𝟎𝑛, −𝑥, 𝟎𝑛)  >  0  𝒘. (−𝑥, 𝟎𝑛, 𝑥, 𝟎𝑛)  <  0 

• 𝒘𝒓. 𝒙 >  𝒘𝒚. 𝒙  𝒘. (𝑥, 𝟎𝑛, 𝟎𝑛, −𝑥)  >  0  𝒘. (−𝑥, 𝟎𝑛, 𝟎𝑛, 𝑥) <  0 

x -x -x x 
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Kesler’s Construction (3) 
• Let 

– 𝒘 = 𝒘1, … ,𝒘𝑘 ∈ 𝑹𝑛 × ⋯× 𝑹𝑛 = 𝑹𝑘𝑛  

– 𝒙𝑖𝑗 =  𝟎 𝑖−1 𝑛, 𝒙, 𝟎 𝑘−𝑖 𝑛 – 𝟎 𝑗−1 𝑛, – 𝒙, 𝟎 𝑘−𝑗 𝑛 ∈ 𝑹𝑘𝑛  

 
• Given 𝒙, 𝑦 ∈ 𝑅𝑛  ×  {1, … , 𝑘} 

– For all 𝑗 ≠  𝑦   (all other labels) 
• Add to 𝑷

+
(𝑥, 𝑦), (𝒙𝑦𝑗, 1) 

• Add to 𝑷
−
(𝑥, 𝑦), (– 𝒙𝑦𝑗, −1) 

 

• 𝑷
+
(𝑥, 𝑦) has 𝑘 − 1 positive examples ( 𝑹𝑘𝑛)  

• 𝑷
−
(𝑥, 𝑦) has 𝑘 − 1 negative examples ( 𝑹𝑘𝑛) 

-x x 
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Learning via Kesler’s Construction 
• Given (𝐱1, 𝑦1), … , (𝐱𝑁, 𝑦𝑁)  𝑹𝑛  ×  {1, … , 𝑘} 
• Create  

– 𝑷+  =   𝑷+(𝐱𝑖 , 𝑦𝑖) 

– 𝑷–   =   𝑷–(𝐱𝑖 , 𝑦𝑖) 

• Find 𝒘 =  (𝐰1, … ,𝐰𝑘)  𝑹𝑘𝑛, such that  
– 𝒘. 𝒙 separates 𝑷+ from 𝑷– 

• One can use any algorithm in this space: Perceptron, Winnow, SVM, etc. 
• To understand how to update the weight vector in the 𝑛-dimensional space, we note that 

             𝐰𝑇  𝐱𝑦𝑦′  ≥  0              (in the 𝑛𝑘-dimensional space) 

• is equivalent to:  

                   (𝐰𝑦
𝑇 – 𝐰𝑦′

T  ) 𝐱 ≥  0     (in the 𝑛-dimensional space) 
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Perceptron in Kesler Construction  
• A perceptron update rule applied in the 𝑛𝑘-dimensional space due to a mistake in 

𝐰𝑇 𝐱𝑖𝑗  ≥  0               

• Or, equivalently to  (𝐰𝑖
𝑇 – 𝐰𝑗

𝑇 )𝐱 ≥  0  (in the 𝑛-dimensional space) 

• Implies the following update: 
 

• Given example (𝐱, 𝑖) (example 𝐱 ∈  𝐑𝑛, labeled 𝑖) 
–  ∀ (𝑖, 𝑗), 𝑖, 𝑗 =  1, … 𝑘, 𝑖  ≠  𝑗                      (***) 

– If  (𝒘𝑖
𝑇  −  𝒘𝑗

𝑇  ) 𝒙 <  0  (mistaken prediction; equivalent to 𝒘𝑇𝒙𝑖𝑗  <  0 ) 

– 𝒘𝑖   𝒘𝑖 + 𝒙 (promotion)           and              𝒘𝑗   𝒘𝑗  –  𝒙 (demotion) 

 
• Note that this is a generalization of balanced Winnow rule. 

 

• Note that we promote 𝒘𝑖 and demote 𝑘 − 1 weight vectors 𝒘𝑗 
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Conservative update 
– The general scheme suggests:  
– Given example (𝒙, 𝑖) (example 𝒙 ∈  𝑹𝑛, labeled 𝑖) 

•  ∀ 𝑖, 𝑗 , 𝑖, 𝑗 =  1,… 𝑘, 𝑖 ≠  𝑗                      (***) 

• If  (𝒘𝑖
𝑇  −  𝒘𝑗

𝑇 ) 𝒙 <  0  (mistaken prediction; equivalent to 𝒘𝑇 𝒙𝑖𝑗  <  0 ) 

• 𝒘𝑖  𝒘𝑖  + 𝒙 (promotion)           and              𝒘𝑗   𝒘𝑗  –  𝒙 (demotion) 

– Promote 𝒘𝑖 and demote 𝑘 − 1 weight vectors 𝒘𝑗 
– A conservative update: (SNoW and LBJava’s implementation): 

• In case of a mistake: only the weights corresponding to the target node 𝑖 and  that closest node 𝑗 
are updated.  

• Let: 𝑗∗ =  𝑎𝑟𝑔𝑚𝑎𝑥𝑗=1,…,𝑘 𝒘𝑗
𝑇 𝒙   (highest activation among competing labels)  

• If  (𝒘𝑖
𝑇 – 𝒘𝑗∗

𝑇  ) 𝒙 <  0  (mistaken prediction)  

– 𝒘𝑖  𝒘𝑖  + 𝒙 (promotion)           and              𝒘𝑗∗  𝒘𝑗∗  –  𝒙 (demotion) 

• Other weight vectors are not being updated. 
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Multiclass Classification Summary 1: 
Multiclass Classification 

From the full dataset, construct three binary 
classifiers, one for each class 

𝒘𝒃𝒍𝒖𝒆
𝑇𝒙  >  0 for 

blue inputs 

𝒘𝒐𝒓𝒈
𝑇𝒙  >  0 𝑓or 

orange inputs 

𝒘𝒃𝒍𝒂𝒄𝒌
𝑇𝒙  >  0 for 

black inputs 

Winner Take All will predict the right answer. Only the 
correct label will have a positive score 

Notation: Score 
for blue label 
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Multiclass Classification Summary 2: 
One-vs-all may not always work 

Red points are not separable with a single binary 
classifier 
The decomposition is not expressive enough! 

𝒘𝒃𝒍𝒖𝒆
𝑇𝒙  >  0 for 

blue inputs 

𝒘𝒐𝒓𝒈
𝑇𝒙  >  0 for 

orange inputs 

𝒘𝒃𝒍𝒂𝒄𝒌
𝑇𝒙  >  0 for 

black inputs 
??? 
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Summary 3:  
 • Local Learning: One-vs-all classification 

• Easy to learn 
– Use any binary classifier learning algorithm 

• Potential Problems 
– Calibration issues 

• We are comparing scores produced by 𝐾 classifiers trained independently. No reason for 
the scores to be in the same numerical range! 

– Train vs. Train 
• Does not account for how the final predictor will be used 
• Does not optimize any global measure of correctness 

– Yet, works fairly well  
• In most cases, especially in high dimensional problems (everything is already linearly 

separable).   
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Summary 4: 
 

• Global Multiclass Approach [Constraint Classification, Har-Peled et. al ‘02] 
– Create 𝐾 classifiers: 𝐰1, 𝐰2, … ,𝐰𝐾 ;  

– Predict with WTA: 𝑎𝑟𝑔𝑚𝑎𝑥𝑖 𝒘𝑖
𝑇𝒙 

– But, train differently:  
• For examples with label 𝑖, we want   

   𝒘𝑖
𝑇𝒙 >  𝒘𝑗

𝑇𝒙 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 

• Training: For each training example (𝒙𝑖 , 𝒚𝑖) :          
        𝑦 ←  𝑎𝑟𝑔max

𝑗
𝒘𝑗

𝑇𝜙(𝒙𝑖 , 𝑦𝑖)    

       if 𝑦 ≠ 𝑦𝑖  

•                 𝒘𝑦𝑖
← 𝒘𝑦𝑖

+ 𝜂𝒙𝑖        (promote) 

•              𝒘𝑦 ← 𝒘𝑦 − 𝜂𝒙𝑖         (demote) 

 

𝜂: learning rate 
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Significance   
• The hypothesis learned above is more expressive than when the OvA assumption is used.  
• Any linear learning algorithm can be used, and algorithmic-specific properties are 

maintained (e.g., attribute efficiency if using winnow.) 
• E.g., the multiclass support vector machine can be implemented by learning a hyperplane to 

separate 𝑃(𝑆) with maximal margin. 
 

• As a byproduct of the linear separability observation, we get a natural notion of a margin in 
the multi-class case, inherited from the  binary separability in the 𝑛𝑘-dimensional space.  
– Given example  𝐱𝑖𝑗 ∈  𝐑𝑛𝑘,     

𝑚𝑎𝑟𝑔𝑖𝑛 𝐱𝑖𝑗 , 𝐰 = min
𝑖𝑗

𝒘𝑇𝒙𝑖𝑗   

– Consequently, given 𝐱 ∈  𝐑𝑛, labeled 𝑖   

                    𝑚𝑎𝑟𝑔𝑖𝑛 𝐱,𝐰 = min
𝑗

(𝒘𝑖
𝑇  −𝒘𝑗

𝑇)𝒙  
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Margin 
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Multiclass Margin 
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Constraint Classification 

• The scheme presented can be generalized to provide a uniform view 
for multiple types of problems: multi-class, multi-label, category-
ranking  

• Reduces learning to a single binary learning task 

• Captures theoretical properties of binary algorithm 

• Experimentally verified 

• Naturally extends Perceptron, SVM, etc... 

• It is called “constraint classification” since it does it all by representing 
labels as a set of constraints or preferences among output labels. 
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Multi-category to Constraint Classification 

• The unified formulation is clear from the following examples: 

• Multiclass 
– (𝑥, 𝐴)          (𝑥, (𝐴 > 𝐵, 𝐴 > 𝐶, 𝐴 > 𝐷) ) 

• Multilabel 
– (𝑥, (𝐴, 𝐵))    (𝑥, ( (𝐴 > 𝐶, 𝐴 > 𝐷,𝐵 > 𝐶, 𝐵 > 𝐷) )   

• Label Ranking 

– (𝑥, (5 > 4 > 3 > 2 > 1))    (𝑥, ( (5 > 4, 4 > 3, 3 > 2, 2 > 1) ) 

 
• In all cases, we have examples (𝑥, 𝑦)  with  𝑦 ∈  𝑺𝒌 

• Where 𝑺𝒌 : partial order over class labels {1,… , 𝑘} 

– defines “preference” relation ( > ) for class labeling 

• Consequently, the Constraint Classifier is:  ℎ:  𝑿  𝑺𝒌 

– ℎ(𝑥) is a partial order 
– ℎ(𝑥) is consistent with 𝑦 if 𝑖 < 𝑗 ∈  𝑦 → 𝑖 < 𝑗 ∈ ℎ(𝑥) 

 

Just like in the multiclass we 
learn one 𝒘𝑖 ∈  𝑹𝑛 for each 
label, the same is done for 
multi-label and ranking. The 
weight vectors are updated 
according with the 
requirements from  

𝑦 ∈  𝑆𝑘 
(Consult the Perceptron in Kesler construction slide) 
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Properties of Construction (Zimak et. al 2002, 2003) 

• Can learn any 𝑎𝑟𝑔𝑚𝑎𝑥 𝒗𝑖 ⋅ 𝒙 function (even when 𝑖 isn’t linearly separable from the union of 
the others)  

• Can use any algorithm to find linear separation 
– Perceptron Algorithm 

• ultraconservative online algorithm [Crammer, Singer 2001] 

– Winnow Algorithm 
• multiclass winnow [ Masterharm 2000 ]  

• Defines a multiclass margin 
– by binary margin in 𝑹𝑘𝑑 
– multiclass SVM [Crammer, Singer 2001] 

 



117 

Margin Generalization Bounds 

• Linear Hypothesis space:  

– ℎ 𝒙 =  𝑎𝑟𝑔𝑠𝑜𝑟𝑡 𝒗𝑖 ⋅ 𝒙 

• 𝒗𝑖 , 𝒙 𝑹𝑑   

• 𝑎𝑟𝑔𝑠𝑜𝑟𝑡 returns permutation of {1, … , 𝑘} 

• CC margin-based bound 

–  = min
𝑥,𝑦  𝜖 𝑺

min
𝑖 <𝑗  𝜖 𝑦

  𝒗𝑖 ⋅ 𝒙 – 𝒗𝑗 ⋅ 𝒙 

– 𝑒𝑟𝑟𝐷 ℎ ≤ Θ
𝐶

𝑚

𝑅2

𝛾2  − ln 𝛿  

  𝑚 - number of examples 

  𝑅 - 𝑚𝑎𝑥𝑥 ||𝑥|| 

   - confidence 

  𝐶 - average # constraints 
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VC-style Generalization Bounds 

• Linear Hypothesis space:  

– ℎ 𝐱 =  𝑎𝑟𝑔𝑠𝑜𝑟𝑡 𝐯𝑖 ⋅ 𝐱 

• 𝐯𝑖 , 𝐱 𝑹𝑑   

• 𝑎𝑟𝑔𝑠𝑜𝑟𝑡 returns permutation of {1, … , 𝑘} 

• CC VC-based bound 

𝑒𝑟𝑟𝐷 ℎ ≤ 𝑒𝑟𝑟 𝑆, ℎ + 𝜃
𝑘𝑑𝑙𝑜𝑔

𝑚𝑘

𝑑
−𝑙𝑛𝛿

𝑚

1

2

   

  𝑚 - number of examples 

  𝑑 - dimension of input space 

  𝛿 - confidence 

  𝑘 - number of classes 

Performance: even though this is the right thing 
to do, and differences can be observed in low 
dimensional cases, in high dimensional cases, 
the impact is not always significant.  
 



Beyond MultiClass Classification 
– Ranking 

• category ranking (over classes) 
• ordinal regression (over examples) 

– Multilabel 
• 𝒙 is both red and blue 

– Complex relationships 
• 𝒙 is more red than blue, but not green 

– Millions of classes 
• sequence labeling (e.g. POS tagging) 
• The same algorithms can be applied to these problems, namely, to Structured 

Prediction 
• This observation is the starting point for CS546. 



(more) Multi-Categorical Output Tasks 

• Sequential Prediction (𝑦 ∈  1, … , 𝐾 +) 
– e.g. POS tagging (‘(NVNNA)’) 

•  “This is a sentence.”  D V D N  

– e.g. phrase identification 

– Many labels: 𝐾𝐿 for length 𝐿 sentence 

• Structured Output Prediction (𝑦 ∈  𝐶( 1, … , 𝐾 +)) 
– e.g. parse tree, multi-level phrase identification 

– e.g. sequential prediction 

– Constrained by:  
•  domain, problem, data, background knowledge, etc... 
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