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Icerik

* Bagging
* Random Forests
* Boosting
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Torbalama

Verileri rastgele farkli sekillerde bolersek, karar agaclari farkl
sonuclar, yuksek varyans verir.

Torbalama: Onyukleme toplama, disik varyansla sonuclanan bir
yontemdir.

Verilerin (veya birden cok ornegin) birden fazla gerceklesmesine
sahip olsaydik, tahminleri birden cok kez hesaplayabilir ve birden
fazla zahmetli tahminin ortalamasini almanin daha az belirsiz
sonuclar urettigi gerceginin ortalamasini alabilirdik.



Bagging
Say for each sampleg, we calculate f°(x), then:
. 1 .
favg(a:) — E Z fb(a:)
b—1

How?

Bootstrap
Construct B (hundreds) of trees (no pruning)
Learn a classifier for each bootstrap sample and average them

Very effective



Bagging for classification: Majority vote
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Bagging decision trees

Original Tree
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Hastie et al.,”The Elements of Statistical Learning: Data Mining, Inference, and Prediction”, Springer (2009)



Out-of-Bag Error Estimation

No cross validation?

Remember, in bootstrapping we sample with replacement, and
therefore not all observations are used for each bootstrap
sample. On average 1/3 of them are not used!

We call them out-of-bag samples (OOB)

We can predict the response for the i-th observation using each of
the trees in which that observation was OOB and do this for n
observations

Calculate overall OOB MSE or classification error



Bagging
Reduces overfitting (variance)
Normally uses one type of classifier

Decision trees are popular

Easy to parallelize



Variable Importance Measures

* Bagging results in improved accuracy over prediction using a single
tree

* Unfortunately, difficult to interpret the resulting model. Bagging
improves prediction accuracy at the expense of interpretability.

Calculate the total amount that the RSS or Gini index is decreased
due to splits over a given predictor, averaged over all B trees.



Fbs Using Gini index on heart data
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RF: Variable Importance Measures

Record the prediction accuracy on the oob samples for each tree

Randomly permute the data for column j in the oob samples the
record the accuracy again.

The decrease in accuracy as a result of this permuting is averaged
over all trees, and is used as a measure of the importance of
variable j in the random forest.
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Bagging - issues

Each tree is identically distributed (i.d.)

=>» the expectation of the average of B such trees is the same
as the expectation of any one of them

=>»the bias of bagged trees is the same as that of the
individual trees

i.d. and not i.i.d




Bagging - issues

An average of B i.i.d. random variables, each with variance o2, has variance:
o?/B

If i.d. (identical but not independent) and pair correlation p is present, then
the variancelis:

pgz | ;PJQ

As B increases the second term disappears but the first term remains

Why does bagging generate correlated trees?




Bagging - issues

Suppose that there is one very strong predictor in the data set,
along with a number of other moderately strong predictors.

Then all bagged trees will select the strong predictor at the top of
the tree and therefore all trees will look similar.

How do we avoid this?




Bagging - issues

We can penalize the splitting (like in pruning) with a penalty term that depends on the number of times
a predictor is selected at a given length

We can restrict how many times a predictor can be used

We only allow a certain number of predictors



Bagging - issues

Remember we want i.i.d such as the bias to be the same and variance to be less?

Other ideas?

What if we consider only a subset of the predictors at each split?

We will still get correlated trees unless ....

we randomly select the subset |



Random Forests



Random Forests

As in bagging, we build a number of decision trees on
bootstrapped training samples each time a split in a tree is
considered, a random sample of m predictors is chosen as split
candidates from the full set of p predictors.

Note that if m = p, then this is bagging.



Random Forests Algorithm

For b =1 to B:
(a) Draw a bootstrap sample Z* of size N from the training data.

(b) Grow a random-forest tree to the bootstrapped data, by recursively
repeating the following steps for each terminal node of the tree, until the minimum

node size n_. is reached.
i. Select m variables at random from the p variables.
ii. Pick the best variable/split-point among the m.
iii. Split the node into two daughter nodes.

Output the ensemble of trees.

To make a prediction at a new point x we do:



Random Forests Tuning

The inventors make the following recommendations:
* For classification, the default value for mis vp and the minimum node size is one.
* For regression, the default value for m is p/3 and the minimum node size is five.

In practice the best values for these parameters will depend on the problem, and they
should be treated as tuning parameters.

Like with Bagging, we can use OOB and therefore RF can be fit in one sequence, with

cross-validation being performed along the way. Once the OOB error stabilizes, the
training can be terminated.



Example

* 4,718 genes measured on tissue samples from 349 patients.
* Each gene has different expression

* Each of the patient samples has a qualitative label with 15 different
levels: either normal or 1 of 14 different types of cancer.

Use random forests to predict cancer type based on the 500 genes that
have the largest variance in the training set.



Test Classification Error
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Random Forests Issues

When the number of variables is large, but the fraction of relevant variables is small,
random forests are likely to perform poorly when m is small

Why?

Because:
At each split the chance can be small that the relevant variables will be selected

For example, with 3 relevant and 100 not so relevant variables the probability of any
of the relevant variables being selected at any split is ~0.25



Test Misclassification Error
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Can RF overfit?

Random forests “cannot overfit” the data wrt to number of
trees.

Why?

The number of trees, B does not mean increase in the
flexibility of the model




| have seen discussion about gains in performance by
controlling the depths of the individual trees grown in

random forests. | usually use full-grown trees and
seldom it costs much (in the classification error) and

results in one less tuning parameter.



Boosting



Boosting

Boosting is a general approach that can be applied to many
statistical learning methods for regression or classification.

Bagging: Generate multiple trees from bootstrapped data and
average the trees.

Recall bagging results in i.d. trees and not i.i.d.

RF produces i.i.d (or more independent) trees by randomly
selecting a subset of predictors at each step



Boosting

Boosting works very differently.
1. Boosting does not involve bootstrap sampling

2. Trees are grown sequentially: each tree is grown
using information from previously grown trees

3. Like bagging, boosting involves combining a large
number of decision trees, f, . .., f°



Sequential fitting

Given the current model,

* we fit a decision tree to the residuals from the model.
Response variable now is the residuals and not Y

e We then add this new decision tree into the fitted function in
order to update the residuals

* The learning rate has to be controlled



Boosting for regression

1. Set f(x)=0 and r; =y, for all i in the training set.
2. For b=1,2,...,B, repeat:
a. Fit a tree with d splits(+1 terminal nodes) to the training data (X, r).

b. fdaresthe fres bytadXifg (1£d shrunken version of the new tree:

Ty < Tg — )\fb(-’l??:)
c. Update the residuals,

B
f(xz) =D AfP(x)
3. Output the beosted model,



Boosting tuning parameters

* The number of trees B. RF and Bagging do not overfit as B
increases. Boosting can overfit! Cross Validation

 The shrinkage parameter A, a small positive number.
Typical values are 0.01 or 0.001 but it depends on the
problem. A only controls the learning rate

* The number d of splits in each tree, which controls the

complexity of the boosted ensemble. Stumpy trees, d =1
works well.




Test Classification Error
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Different flavors

C5.0, The most significant feature unique to C5.0 is a scheme for deriving rule
sets. After a tree is grown, the splitting rules that define the terminal nodes can
sometimes be simplified: that is, one or more condition can be dropped without
changing the subset of observations that fall in the node.

CART or Classification And Regression Trees is often used as a generic acronym
for the term Decision Tree, though it apparently has a more specific meaning. In
sum, the CART implementation is very similar to C4.5. Used in sklearn



Missing data

 What if we miss predictor values?
— Remove those examples => depletion of the training set

— Impute the values either with mean, knn, from the marginal
or joint distributions

* Trees have a nicer way of doing this

— Categorical



Where are we?

* Algorithms

e Theory

‘ * We have a formal notion of “learnability”

 How will your algorithm do on the next example?

* and other complexity parameters
* Algorithmic Implications of the theory?



Boosting

Boosting is (today) a general learning paradigm for putting together a Strong
Learner, given a collection (possibly infinite) of Weak Learners.

The original Boosting Algorithm was proposed as an answer to a theoretical
guestion in PAC learning. [The Strength of Weak Learnability; Schapire, 89]

Consequently, Boosting has interesting theoretical implications, e.g., on the
relations between PAC learnability and compression.

polynomial in n, size ¢ and log(é).



Boosting Notes

However, the key contribution of Boosting has been practical, as
a way to compose a good learner from many weak learners.

It is a member of a family of Ensemble Algorithms, but has
stronger guarantees than others.

A Boosting demo is available at
http://cseweb.ucsd.edu/~yfreund/adaboost/

Example
Theory of Boosting



http://cseweb.ucsd.edu/~yfreund/adaboost/

Boosting Motivation

. GG ™ . 7 O EE
[Gorin et al.]

e goal: automatically categorize type of call
requested by phone customer
(Collect. CallingCard. PersonToPerson, etc.)

ves I'd like to place a collect call long
distance please (Collect)

operator I need to make a call but I need to
bill it to my office (ThirdNumber)

ves I1'd like to place a call on my master card
please (CallingCard)

I just called a number in sjioux city and T
musta rang the wrong number because 1 got the
wrong party and I would like to have that taken
of f of my bill (BillingCredit)

e observagon:
easy to find “‘rules of thumb’ that are ““often™
correct
e.g.: “IF ‘card’ occurs 1n utterance
THEN predict “CallingCard’ ™’

hard to find single highly accurate prediction
rule



The Boosting Approach

Select a small subset of examples

Derive a rough rule of thumb

Examine 2nd set of examples

Derive 2nd rule of thumb

Repeat T times

Combine the learned rules into a single hypothesis

How to choose subsets of examples to examine on each round?
How to combine all the rules of thumb into single prediction rule?

General method of converting rough rules of thumb into highly accurate prediction
rule



Theoretical Motivation

for any distribution
Vo, e > 0
Given polynomially many random examples
Finds hypothesis with error < e with probability = (1 — 06)

Same, but only forsomee < 15 — Y

Does weak learnability imply strong learnability?
Anecdote: the importance of the distribution free assumption



History

[Schapire '89]:

Some lessons for Ph.D. students

[Freund "90]:

[Drucker, Schapire & Simard "92]:

[Freund & Schapire "95]:

AdaBoost was followed by a huge number of papers and practical applications



A Formal View of Boosting

Given training set (x4,y4), --- (X, ¥,,,)
y; € {—1,+1}is the correct label of instance x; € X
Fort = 1,...,T

distribution

weak hypothesis
h’t

Output: final hypothesis H g,



Ad Think about unwrapping it all

~ \

thewayto 1/m

Constructing D; on {1, ... m}: 7. = Z\D\t(i)eXp(—at yihe ()

* Diy1 = De(D)/zy X e7™™  ify; = h
D.(i)/z; X e*%  ify;

—— < 1; smaller weight

—— > 1, larger weight

_ b x exp(—a; y; by (x;))

T

where z; = normalization constant
and a; = Y2In{ (1 — &)/& }

Notes about a;:

d Positive due 10 tire—veurnrecorrmrg-woourrporon

L Examples that we predicted correctly are
demoted, others promoted

L Sensible weighting scheme: better hypothesis
(smaller error) = larger weight

Final hypothesis: Heipq; (X) = sign (¢ ap he(x) )

47




Are we recording? YES!

Administration (11

Available on the web site

Remember that all the lectures are available on the website before the class
— Go over it and be prepared

— A new set of written notes will accompany most lectures, with some more details,
examples and, (when relevant) some code.

HW 3: Due on 11/16/20

— You cannot solve all the problems yet.
— Less time consuming; no programming

Cheating
— Several problems in HW1 and HW2

48




Projects

CIS 519 students need to do a team project: Read the project descriptions

There will be 3 projects.

In all cases, we will give you datasets and initial ideas

A detailed note will come out today.

Timeline:
- T1/11

11 /99
11720

— 12/2
— 12/15-20
Try to make it interesting!

49


https://www.seas.upenn.edu/~cis519/fall2020/cis519-fall20-projects.pdf

A Toy Example




Round 1

& = 0.3
a; = 0.42

51



g, = 0.21
a, = 0.65

52



g, = 0.14
a; = 0.92

53



Hﬁnm

A Toy Example

Final Hvpothesi

=sign

0.42

+0.65

+0.92

A cool and important note
about the final hypothesis:
it is possible that the
combined hypothesis makes
no mistakes on the training
data, but boosting can still

learn, by adding more weak
hypotheses

54



Analyzing Adaboost

e Theorem:

run AdaBoost
let « = 1/2 —~ {

1. Why is the theorem stated in terms of
minimizing training error? Is that what we

want?
% 2. What does the bound mean?

then
training error( Hepa) < Il 2ye (1 f,}J
= 11,1 — 447
Ty
exp| 2x~7
\ IIr
eso:1fVvt: 44y >~ >0

o , __ 2
then training en‘-::}r(ﬂﬁlml} < e 2771

e adaptive:

does not need to know ~ or 7" a priori

can exploit ; = 4

55




"
What does training error < exp{-2\gamma”2 T} mean? (here:

\gamma--small constant; T number of boosting rounds)

-. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app -
20



“n
Why is the Theorem stated in terms of training error? What

guarantees do we really want? [we want guaranteeson......
error; but......]

-. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app -

S/



Analyzing Adaboost

e Theorem: 1. Why is the theorem stated in terms of
run AdaBoost minimizing training error? Is that what we
lete; = 1/2 - want?
then 2. What does the bound mean?

training error( Hepa) < Il 2y (1 ,}J

Need to prove only
the first inequality,
the rest is algebra.

ee(l—e€) = (1/2-Y)(1/2+ Y)))
T Dl —

1—(2Y)? < exp(=(2Y)?)

eso:1fVvt: 4y =>~=0
then training error(Hgay) < ¢ 271
e adaptive:

does not need to know ~ or 7" a priori
can exploit ; = 4 58




AdaBoost Proof (1)

f
D (i)/z, x et if

e Step 1: the final weight of an example (via unwrapping recursion)

The final “weight” of
the i-th example




~ _ exp(—y; 2rache(x;)) 1
AdaBoost Prog i« = mz, m
e Yif(xi) 1
. I~Ztepr: training error(Hfinal) <Il:Z; - I1;Z; ‘m
° FOoT:

The definition
of training error

if vi # Hrina1(X;)

else

Always holds for
mistakes (see above) —

Using Step 1 —

D is a distribution
over the m examples ——

60



Dy = D(i)/zy x e™ @t ify; = h(x;)

Ada BOOSt PrOOf(3) l;t(i)/z-gxewt ify;, = he (x;)

x exp(—a; v; by (x7))

1
o Step3:Z; =2 (6:(1 —¢€4))2
* Proof:

By definition of Z,; it’s a
normalization term

Why does it work?
The Weak Learning
Hypothesis

Splitting the sum to
“mistakes” and no- .

A strong assumption due to
mistakes” I> 2 >

the “for all distributions”.
But — works well in practice

The definition of ¢;

—

The definition of a, —

: \ Step 2 training er’ror(Hfmal) <[l:Z;
et = sqrt{ } > 1

. and step 3 together prove the Theorem.

= The error of the final hypothesis can be as low as you
want.




Summary of Ensemble Methods

* Boosting

* Bagging
e Random Forests



Boosting

 |nitialization:

* |teration Step:

* Choose your favorite hypothesis space & learning algorithm

* |Increase/decrease weights on training cases model gets wrong/correct.

e Typically requires 100’s to 1000’s of iterations
e Return final model:



Boosting: Different Perspectives

Boosting is a maximum-margin method (Schapire et al. 1998, Rosset et al.
2004)

Boosting is an additive logistic regression model (Friedman, Hastie and
Tibshirani 2000)

Boosting is an equalizer (Breiman 1998) (Friedman, Hastie, Tibshirani 2000)

Boosting is a linear classifier, over an incrementally acquired “feature space”.



Bagging

Bagging predictors is a method for generating multiple versions of a predictor and using
these to get an aggregated predictor.

The multiple versions are formed by making bootstrap replicates of the learning set and
using these as new learning sets.

Tests on real and simulated data sets using classification and regression trees and subset
selection in linear regression show that bagging can give substantial gains in accuracy.

The vital element is the instability of the prediction method. If perturbing the learning set

can cause significant changes in the predictor constructed, then bagging can improve
accuracy.



Example: Bagged Decision Trees

 Draw 100 bootstrap samples of data
* Train trees on each sample = 100 trees
* Average prediction of trees on out-of-bag samples

. Ay ' ' £y '
£y Al A /‘f;‘x ra /‘f?‘x AN T A2 /‘f}x

Average prediction
(0.23+0.19+0.34+0.22+0.26+ ... +0.31)/# Trees = 0.24




Random Forests (Bagged Trees++)

* Draw 1000 + bootstrap samples of data
* Draw sample of available attributes at each split
* Train trees on each sample/attribute set 2 1000 + trees

* Average prediction of trees on o.ut-of-?,:.ag samples

NoA A A L. /‘f

od—

Average prediction
(0.23+0.19+0.34+0.22+0.26+ ... +0.31)/# Trees = 0.24



So Far: Classification

So far, we focused on Binary Classification

For linear models:

The prediction is simple:

The output

is a single bit



Multi-Categorical Output Tasks

character recognition (‘6’)
document classification (‘homepage’)

document classification (‘(homepage,facultypage)’)

user preference (‘(love > like > hate)’)
document classification (‘hompage > facultypage > sports’)

cohere with class hierarchy
place document into index where ‘soccer’ is-a ‘sport’



Setting

GivenadatasetD = {(x;,y,)} ™
Where x; € R",y, € {1,2, ..., k}.

Given an example x, and a learned function (model),
Output a single class labels y.



"u “n
You know how to train a binary classifier, say, an SVM. Now

you have a 3-labels classification problem. What would you
do?

-. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app -
/3



Binary to Multiclass

* Most schemes for multiclass classification work by reducing the
problem to that of binary classification.

 There are multiple ways to decompose the multiclass prediction into
multiple binary decisions

v
v
 We will then talk about a more general scheme:

* |t can be used to model other non-binary classification schemes and
leads to Structured Prediction.



One-Vs-All

Assumption: Each class can be separated from all the rest using a binary classifier in
the hypothesis space.

Learning: Decomposed to learning k independent binary classifiers, one for each
class label.

Learning:
D
L,
e Positive examples: Elements of D with label [
* Negative examples: All other elements of D

Decision: Winner Takes All (WTA):



Solving MultiClass with 1 vs All learning

MultiClass classifier

.‘.
o ©
e
: : ® 0y
Decompose into binary problems e ©
2™ g™ g™
® o) oo @ & oo @ & oo
e @p T Te—eg e | 0o
o © o ©® ®© 3

No theoretical justification

Note: in high dimensional spaces, it’s likely that things are separable



Learning via One-Versus-All (OvA) Assumption

Find v,, vp, v, v € R" such that

. red &

b blue o

g green Y H = R™
yellow ¥

Classification: f(x) = argmax;v; x

Real
Problem




All-Vs-All

Assumption: There is a separation between every pair of classes using a binary
classifier in the hypothesis space.

Learning: Decomposed to learning [k choose 2] ~ k? independent binary
classifiers, one corresponding to each pair of class labels. For the pair (i, j):

Decision: More involved, since output of binary classifier may not cohere. Each
abel gets k — 1 votes.

Decision Options:




Learning via All-Verses-All (AvA) Assumption

Findv,p, v,

rb

rg

V1 Vs Vpyo U

g9

e R% such that

red
blue
red
green

Individual
Classifiers

Decision
Regions

It is possible to
separate all k classes
with the

0 (k?) classifiers

H = Rkkn

How to
classify?




Classifying with AvA

Tournament Majority Vote

BE BN (N BN UE N

1 red, 2 blue, 2 green
- ?

All are post-learning and might cause weird stuff



One-vs-All vs. All vs. All

Assume m examples, k class labels.

(Think about Dual/Primal)

One vs. All:

All vs. All:

What type of learning methods would prefer All vs. All (efficiency-wise)?



Error Correcting Codes Decomposition

1-vs-all uses k classifiers for k labels; can you use only log, k?

Reduce the multi-class classification to random binary problems.
— Choose a “code word” for each label.
— K=8: all we need is 3 bits, three classifiers

Rows: An encoding of each class (k rows)

Columns: L dichotomies of the data, each corresponds to a new
classification problem

Extreme cases:
— 1-vs-all: k rows, k columns
— krows log, k columns

Each training example is mapped to one example per column
- (XI3) 9 {(X)P]-)r +; (XIPZ)I - (XIP3)I - (XIP4)I +}

To classify a new example x:
—  Evaluate hypothesis on the 4 binary problems
{(x,P1), (x,P2), (x,P3), (x,P4),}
— Choose label that is most consistent with the results.
Use Hamming distance (bit-wise distance)
Nice theoretical results as a function of the performance of the P, s (depending on
code & size)

Potential Problems?

Label P P3 P4
2
1 + - +
2 + + _
3 _ _
4 - +
k n _ _

Can you separate any dichotomy?




Problems with Decompositions

Learning optimizes over local metrics

Poor decomposition = poor performance

Especially true for Error Correcting Output Codes

Efficiency: e.g., All vs. All vs. One vs. All
Former has advantage when working with the dual space.

Nevertheless, the most dominant approach in applications is One Vs. All.
Not clear how to generalize it well to problems with a very large # of labels.



1 Vs All: Learning Architecture

k label nodes; n input features, nk weights.
Evaluation: Winner Take All
Training: Each set of n weights, corresponding to the i-th label, is trained

its X,
— Independently jonx

Hence: Local learning; only the final decision is global, (Winner Takes All (WTA)).
However, this architecture allows multiple learning algorithms, including those the are “globa

Targets (each an LTU) IF Se3 IF
Weighted edges (weight

vectors)

Features O

I”

84



Another View on Binary Classification

>

Negative

 Rather than a single binary variable at the output W

 Represent 2 weights per feature;
— Decision:

— Learning: separately
both sets of n

f[(wr—w™) - x=0]+y, w «wirYs, w;<w;r Y%

III

We need a “globa

Can this be generalized to the ,
learning approach

case of k labels, k > 27




Recall: Winnow’s Extensions

e Winnow learns monotone Boolean functions ol POSItJerG . NegaEive
w w

* We extended to general Boolean functions via

* “Balanced Winnow”

— Decision:

— Learning: separately

X

If [(wt —w™) - x=0]#y, w]<w/rY% w;

Can this be generalized to the
case of k labels, k > 27

I”

We need a “globa
learning approach




Extending Balanced

In a 1-vs-all training you have a target node that represents positive examples and target node that
represents negative examples.

Typically, we train each node separately (mine/not-mine example).
Rather, given an example we could say: this is more a + example than a — example.

We compared the activation of the different target nodes (classifiers) on a given example. (This example
is more class + than class -)

If [(W+ —W_) I 6] * Y, W;I_ — Wil_ryxi’ Wl_(_ Wl._r_yxi

Can this be generalized to the case of k labels, k > 27



Where are we?

* [ntroduction
 Combining binary classifiers
v

i

* Training a single (global) classifier
— Multiclass SVM
v

— Constraint classification
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Recall: Margin for binary classifiers

 The margin of a hyperplane for a dataset is the distance between
the hyperplane and the data point nearest to it.




Multiclass Margin

Defined as the score difference between the highest
scoring label and the second one

/ Multiclass Margin

M Blue
Score for B Red
a label
= W pe X Green
M Black

Labels



Multiclass SVM (Intuition)

* Recall: Binary SVM

Minimize norm of weight vector, while keeping the closest points to the hyperplane with a score
+1

e Multiclass SVM

* But, weight vectors are not learned independently

Minimize total norm of the weight vectors while making sure that the true label scores at least
1 more than the second best one.



Multiclass SVM in the separable case

Recall hard binary SVM Size of the weights.

min Lwlw Effectively, regularizer

= 2

S.t.V?:, yz‘WTXi =1

S.t. wlix—wilx>1 V(x;,y:) € D,

‘l ke{l,2,--- K}, k#Yyi,

The score for the true label is higher than
the score for any other label by 1




Multiclass SVM: General case

Size of the weights.
Effectively, regularizer

Total slack. Effectively,
don’t allow too many
examples to violate the
margin constraint

mln E Wi Wi
W1, W2, WK

W;{ X —wpx>1 V(xi,¥:i) € D,
ked{l,2,--- K}, k #Yy,,
The score for the true label is higher than Slack variables. Not all
the score for any other label by 1 examples need to
satisfy the margin
constraint.

Y

Slack variables can
only be positive




Multiclass SVM: Ge

neral case

Total slack. Effectively,

Size of the weights.

don’t allow too many
examples to violate the

Effectively, regularizer
)z

margin constraint

V(x:,y:) € D,
k € {1723"' aK}ak%y'ia
V3.

. 1
min = wW Wk—I—C
s.t. Wy X — wkx >1—&;,
562 2 0: _____
v

The score for the true label is higher than
the score for any other label by 1 - ¢,

SIacE variables. Not all
examples need to
satisfy the margin

constraint.

v

only be

Slack variables can

positive




Multiclass SVM

* Generalizes binary SVM algorithm

 Comes with similar generalization guarantees as the binary SVM
* Can be trained using different optimization methods



Multiclass SVM: Summary

Training:

Prediction:

* argmax; W’{x

With K labels and inputs in R, we have nK weights in all
Why does it work?

A theoretical justification, along with extensions to other algorithms beyond SVM is
given by “Constraint Classification”

Skip the rest of the notes



Constraint Classification

The examples we give the learner are pairs (x,v),y € {1, ...k}

The “black box learner” (1 vs. all) we described might be thought of as a function of x only but, actually, we
made use of the labels y

How is y being used?
-y X k classifiers

How do we predict? ls it better in any well defined way?
£ = w,lx

*

y
Equivalently, we can say that we predict as follows:

y (x*)
So far, we did not say how we learn the k weight vectorsw, (y = 1,...k)
better fits the way we predict



Linear Separability for Multiclass

We are learning k n-dimensional weight vectors, so we can concatenate the k weight vectors into

Notice: This is just a representational trick.
We did not say how to learn the weight
vectors.

Key Construction: (Kesler Construction; Zimak’s Constraint Classification)

Ee. x, = (0,x,0, 0) € Rk (herek = 4,y = 2)

Now we can underistand the n-dimensional decision rule:
Predict y iff vy e {l,..k}Ly +y

(WJT,—WJT,,)- x>0 (%%

Equivalently, in the nk-dimensional space
Predict y iff vy € {1,..k}L,y #y

ya \ _
w (X, =%, ) =w" X, = 0

Conclusion: The set (x,,,,/ ,+ ) =(xy, - x

r, +)islinearly separable from the set (—x,,
separator w € RK" |

y y'

We showed: if pairs of labels
are separable (a reasonable
assumption) than in some
higher dimensional space, the
problem is linearly separable.

, — ) using the linear



Constraint Classification

We first explain via Kesler’s construction; then show we don’t need it
Given a data set {(X,y)}, (m examples) withx € R",y € {1,2, ...k}
create a binary classification task (in R*™):
Xy — X1, +), (X, - Xy,—), forally” # y [2m(k — 1) examples]
Here x,, € R*"

Use your favorite linear learning algorithm to train a binary classifier.

Given an nk dimensional weight vector w and a new example x, predict:
argmax, w' x,



Details: Kesler Construction & Multi-Class Separability

* Transform Examples

2> 4 2>1
. G > >

@
O @
2>1 2>73
2>3/. l OO%“  (x, i) was a given n-dimensional exampl
@ - @) O X, 1) was a given n-dimensional example
2> 4 ® ‘: (that is, x has is labeled i, then
® o0 x;,Vj=1,..k,j# i,are positive
© examples in the nk-dimensional space.
. . — %] .
i>] fi®) - fx) >0 e e
WXL-—I/I;-X]->O X-=(000x)€R"d
W-(X,-X) >0 X =X = (0,x,0,—x)
W . Xl] > 0 W — (Wli WZ) W3, W4) € de




° y = argmaxi=(r,b,g, ) Wl-.x

* Findw_,w,,

Kesler’s Construction (1)

n
w,w ER

such that

O
&
O

H = R




Kesler’s Construction (2)

oW, ) ERM
Let 0", be the n-dim zero vector

letw = (W, w,,w

Pl -x %% Bl x V777
w.x > w,.x<eow. (x,—x,04,0") > 0 w.(—x,x,0m0") < 0
w.x > w, .x Sw.(x,0h—x,0) > 0w (—x,0h,x, 0" <0
W.x > W, X w0500=x) > 0o w.(—x0%0"%x) <0

+




Kesler’s Construction (3)

Let

00/

20

. -x

D

Given (x,y) € R™ x {1, ..., k}

« AddtoP " (x,¥), (x,;, 1)
* Addto P (x,y),(-x,;,—1)

P J_r (x,y) has k — 1 positive examples (< r=)
P (x,y) has k — 1 negative examples (< r-)




Learning via Kesler’s Construction

Given (X1,¥1), .., Xn, ¥n) € R™" X {1, ..., k}
Create

Findw = (Wq, ..., W) € R*, such that o O

One can use any algorithm in this space: Perceptron, Winnow, SVM, elc.

To understand how to update the weight vector in the n-dimensional space, we note that
wl Xyy' = 0 (in the nk-dimensional space)

is equivalent to:

(w§ - w;, )x = 0 (in the n-dimensional space)



Perceptron in Kesler Construction

A ?erceptron update rule applied in the nk-dimensional space due to a mistake in
wix;; =20

Or, equivalently to (wf — ij )X = 0 (in the n-dimensional space)
Implies the following update:

Given example (x,1) (example x € R", labeled i)

Note that this is a generalization of balanced Winnow rule.

Note that we promote w; and demote k — 1 weight vectors w;



Conservative update

v(ij)ij=1 .k i +j (***)
If (w! — w]-T)x < 0 (mistaken prediction; equivalent to w’ xXij < 0)
w; € w; + x (promotion) and w; € w; - x (demotion)

In case of a mistake: only the weights corresponding to the target node i and that closest node j
are updated.

Let: j* = argmaxj—, WJT x (highest activation among competing labels)

If (w! - ij* ) x < 0 (mistaken prediction)

Other weight vectors are not being updated.



Multiclass Classification Summary 1:
Multiclass Classification

%o ° From the full dataset, construct three binary
® 5 ° classifiers, one for each class
‘>
o O
o .
000 ©.° \ gee
O ® .
0% oo
o ©
Wpe X |> 0 for w, x > 0for Wiaer X > 0 for
blue inputs black inputs
Notation: Score Winner Take All will predict the right answer. Only the

for blue label correct label will have a positive score




Multiclass Classification Summary 2:
One-vs-all may not always work

Red points are not separable with a single binary
classifier
The decomposition is not expressive enough!

®) (@) ®) () ®) (@)
OOO oJoleo OOO L X X OOO oJoleo
o0 O 0O\ @ e® O
o) @) o (e L o ® (@)
o o o o
(@) Oo (@) Oo
Wy x > 0for w, . x > 0for  wy,,"x > 0for 277

blue inputs black inputs



Summary 3:

e Local Learning: One-vs-all classification
e Easytolearn

e Potential Problems

 We are comparing scores produced by K classifiers trained independently. No reason for
the scores to be in the same numerical range!

* Does not account for how the final predictor will be used
* Does not optimize any global measure of correctness

* In most cases, especially in high dimensional problems (everything is already linearly
separable).



Summary 4.

* Global Multiclass Approach [Constraint Classification, Har-Peled et. al ‘02]

* For examples with label i, we want
wix > wjxforallj
* Training: For each training example (x;, y;) :
y « argmax wi o (x;,y;)
ify #+y;
. w,. < wy, +nx; (promote)

n: learning rate
. Wy <« Wy — NX; (demote)



Significance
OO
The hypothesis learned above is more expressive than when the OvA assumption is useq.

Any linear learning algorithm can be used, and algorithmic-specific properties are
maintained (e.g., attribute efficiency if using winnow.)

E.g., the multiclass support vector machine can be implemented by learning a hyperplane to
separate P(S) with maximal margin.

As a byproduct of the linear separability observation, we get a natural notion of a margin in
the multi-class case, inherited from the binary separability in the nk-dimensional space.



Margin

The margin of a hyperplane for a dataset is the
distance between the hyperplane and the data point
nearest to it.
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Multiclass Margin

Defined as the score difference between the highest
scoring label and the second one

Multiclass Margin |

M Blue

Score for B Red
a label
=W, X Green
M Black

Labels
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Constraint Classification

The scheme presented can be generalized to provide a uniform view

for multiple types of problems: multi-class, multi-label, category-
ranking

Reduces learning to a single binary learning task
Captures theoretical properties of binary algorithm
Experimentally verified

Naturally extends Perceptron, SVM, etc...

It is called “constraint classification” since it does it all by representing
labels as a set of constraints or preferences among output labels.



Multi-category to Constraint Classification

The unified formulation is clear from the following examples:

Multiclass Just like in the multiclass we
A A>BA>CA>D learn one w, € R™" for each

Multilabel label, the same is done for
A B A~CA-~DB=~>CB=>D multi-label and ranking. The

weight vectors are updated
according with the
requirements from

y € S5

In a” cases, we have examples (x’ y) Wlth y € Sk (Consult the Perceptron in Kesler construction slide)

Label Ranking

Where S, : partial order over class labels {1, ..., k} —

Consequently, the Constraint Classifier is: h: X —> §,



Properties of Construction (zimak et. al 2002, 2003)

Can learn any argmax v; - x function (even when i isn’t linearly separable from the union of
the others)

Can use any algorithm to find linear separation

* ultraconservative online algorithm [Crammer, Singer 2001]

 multiclass winnow [ Masterharm 2000 ]
Defines a multiclass margin




Margin Generalization Bounds

* Linear Hypothesis space:

* v;, x €R?
* argsort returns permutation of {1, ..., k}

* CC margin-based bound

m - number of examples
R - max, ||x||
o - confidence
C - average # constraints




VC-style Generalization Bounds

* Linear Hypothesis space:
* v;, X €R“ >/<

* argsort returns permutation of {1, ..., k}

e CCVC(C-based bound

m - number of examples

1 . . .
— d - dimension of input space
k
(kdlog(’"—)—lncs)}z S - conf
d confidence
€rTp (h) < err(S,h) +6 { m k - number of classes

| Performance: even though this is the right thing
to do, and differences can be observed in low
dimensional cases, in high dimensional cases,
the impact is not always significant.




Beyond MultiClass Classification

category ranking (over classes)
ordinal regression (over examples)

x is both red and blue
X is more red than blue, but not green

sequence labeling (e.g. POS tagging)

The same algorithms can be applied to these problems, namely, to Structured
Prediction

This observation is the starting point for CS546.



(more) Multi-Categorical Output Tasks
 Sequential Prediction (y € {1,...,K}")

“This is a sentence” . = DVDN

e Structured Output Prediction (y € C({1, ...,K}"))

domain, problem, data, background knowledge, etc...



Usage Notes

A lot of slides are adopted from the presentations and documents published on internet by experts who
know the subject very well.

| would like to thank who prepared slides and documents.
Also, these slides are made publicly available on the web for anyone to use

If you choose to use them, | ask that you alert me of any mistakes which were made and allow me the
option of incorporating such changes (with an acknowledgment) in my set of slides.

Sincerely,
Dr. Cahit Karakus
cahitkarakus@gmail.com



